НОВОСТИ

 
08 апреля 2019 г.

Разные способы отключения генов могут приводить к разным фенотипическим эффектам. Иногда подавление экспрессии гена («нокдаун») ведет к серьезному изменению фенотипа, в то время как мутанты, у которых тот же самый ген «нокаутирован» преждевременным стоп-кодоном (нонсенс-мутацией), имеют нормальный фенотип. Пытаясь разгадать этот парадокс, два исследовательских коллектива из Германии и Китая частично расшифровали неизвестный ранее механизм, повышающий устойчивость организмов к нонсенс-мутациям. Оказалось, что синтез матричных РНК, содержащих преждевременный стоп-кодон, через несколько промежуточных этапов (первым из которых является нонсенс-опосредованный распад РНК) ведет к повышению экспрессии генов, родственных испорченному нонсенс-мутацией. В результате в клетке синтезируются дополнительные белки, похожие на тот, чей ген был испорчен, что и позволяет частично или полностью скомпенсировать последствия нонсенс-мутации.

Рис. 1. Предполагаемый механизм компенсации последствий нонсенс-мутации. Ген, содержащий преждевременный стоп-кодон (нонсенс-мутацию), транскрибируется. Получившаяся матричная РНК выходит из ядра в цитоплазму (нонсенс-мутация помечена красной звездочкой). Здесь эта мРНК разрезается на кусочки системой нонсенс-опосредованного распада РНК (NMD, Nonsense-mediated decay). Фрагменты разрушенной мРНК объединяются с белками, участвующими в NMD, например, с белком Upf3a. Комплекс из Upf3a и фрагмента РНК отправляется в ядро. Там он взаимодействует с белковым комплексом COMPASS. Фрагмент мРНК используется для распознавания генов с похожей последовательностью, то есть родственных гену, испорченному мутацией. Вся эта конструкция прикрепляется к родственному гену, после чего COMPASS осуществляет эпигенетическую модификацию (триметилирование лизина 4) гистона H3 в промоторной области гена. В результате экспрессия родственного гена усиливается, и в клетке синтезируются дополнительные молекулы белка, похожего на тот, что был испорчен мутацией. Это может привести к частичной или полной компенсации фенотипических последствий нонсенс-мутации.

В ходе эволюции живые существа выработали целый ряд механизмов для повышения устойчивости к различным помехам, в том числе — к постоянно возникающим случайным мутациям. К таким механизмам можно отнести регуляторные контуры с отрицательными обратными связями, белки-шапероны, помогающие мутантным белкам принять правильную трехмерную конфигурацию, дублирование функций белок-кодирующих и регуляторных последовательностей, что порождает кажущуюся «генетическую избыточность».

Еще один механизм, помогающий сгладить последствия потенциально вредных мутаций, называют нонсенс-опосредованным распадом мРНК (NMD, nonsense-mediated decay). Если в каком-то гене в результате мутации возникает преждевременный стоп-кодон (такие мутации называют нонсенс-мутациями), то считанная с такого гена матричная РНК уничтожается: ее разрезают на кусочки белки системы NMD. Это позволяет избежать синтеза бессмысленных «усеченных» белков, потенциально вредных для клетки и организма.

Как выяснилось, у системы NMD есть хитроумная надстройка, помогающая дополнительно снизить вредоносность нонсенс-мутаций. Сразу двум исследовательским коллективам из Германии и Китая удалось в общих чертах расшифровать принцип работы этого механизма, о чем рассказывается в двух статьях, опубликованных в свежем номере журнала Nature.

Обе группы пытались понять причины странного явления, которое состоит в следующем. Иногда подавление экспрессии («нокдаун») какого-нибудь гена приводит к серьезному изменению фенотипа. Но если тот же самый ген «нокаутировать» путем внесения в него нонсенс-мутации, то фенотип получается нормальный. Такое удивительное расхождение между результатами генетического нокдауна и нокаута было показано для многих генов у классических модельных объектов: мыши, рыбки данио-рерио и растения резуховидки Таля.

Недавно выяснилось, что в ответ на нокаут (но не нокдаун!) некоторых генов происходит усиление экспрессии генов, родственных нокаутированному, то есть имеющих похожую нуклеотидную последовательность. Обычно это паралоги — потомки одного и того же предкового гена, некогда возникшие в результате генных дупликаций, поделившие между собой функции и успевшие накопить нуклеотидные различия. В результате в клетках синтезируются дополнительные молекулы белков, похожих по своей аминокислотной последовательности на тот белок, чей ген был испорчен мутацией. По-видимому, эти белки частично берут на себя его функцию, тем самым помогая сгладить негативные последствия нонсенс-мутации. Явление назвали «генетическим компенсаторным ответом».

Но каким образом нонсенс-мутация в одном гене приводит к активации экспрессии других генов, родственных нокаутированному? До сих пор ответа на этот вопрос не было.

Оба исследовательских коллектива работали с рыбками данио-рерио, а один из них (M. A. El-Brolosy et al.) — также с культурами мышиных клеток. Чтобы найти связующие звенья между нокаутом гена и активацией экспрессии родственных генов, обе группы провели множество экспериментов с широким кругом генов и мутаций, вызывающих (или не вызывающих) генетический компенсаторный ответ (GCR). Результаты, полученные на многих разных генах (и рыбьих, и мышиных), оказались схожими.

В частности, китайский коллектив работал с геном capn3a. Если у эмбрионов данио-рерио заблокировать транскрипцию или трансляцию этого гена, не меняя сам ген, то есть осуществить нокдаун, то получаются рыбки с недоразвитой печенью. Однако печень нормально развивается у нокаутных рыбок capn3aΔ14/Δ14, у которых из первого экзона гена capn3a вырезан кусок длиной в 14 нуклеотидов, что приводит к появлению преждевременного стоп-кодона. Оказалось, что у нокаутных эмбрионов резко повышен (по сравнению и с «нокдаунными», и с обычными, контрольными эмбрионами) уровень экспрессии нескольких генов, родственных испорченному, в том числе capn8 и capn12. Дополнительные эксперименты подтвердили, что это типичный пример GCR. Именно наличие нонсенс-мутации в гене capn3a, при обязательном условии присутствия считанных с мутантного гена матричных РНК, но не само по себе отсутствие функционального белка Capn3a (которого нет ни у нокаутных, ни у нокдаунных рыбок), стимулирует экспрессию родственных генов capn8 и capn12. Повышенная активность родственных генов сводит на нет негативные последствия нонсенс-мутации.

Установив эти факты, исследователи стали экспериментировать с другими мутациями гена capn3a. Оказалось, что GCR наблюдается только в тех случаях, когда мутация приводит к появлению преждевременного стоп-кодона в любом экзоне, кроме последнего. Это наводит на мысль об участии механизма NMD, потому что нонсенс-опосредованный распад мРНК включается как раз при наличии преждевременного стоп-кодона в любом экзоне, кроме последнего. Механизм NMD срабатывает, когда рибосома, осуществляющая трансляцию мРНК, прекращает свою работу на стоп-кодоне, не дойдя до группы белков, которые в ходе сплайсинга прикрепляются к мРНК в местах сращивания экзонов.

Аналогичные результаты дали и эксперименты с другими генами, в том числе с геном nid1a, нокдаун которого ведет к уменьшению длины тела данио-рерио, а нонсенс-мутации дают нормальный фенотип благодаря GCR (потому что повышается экспрессия родственных генов nid1b и nid2a).

Гипотеза об участии системы NMD в генетическом компенсаторном ответе была подтверждена дальнейшими экспериментами. В частности, оказалось, что GCR сходит на нет, если подавить экспрессию некоторых генов, участвующих в NMD — в особенности гена upf3a. Результаты по еще одному вовлеченному в NMD гену, upf1, у двух исследовательских групп получились разные: то ли этот ген важен для GCR (M. A. El-Brolosy et al.), то ли не очень (Z. Ma et al.).

Так или иначе, upf3a, по-видимому, является одним из главных связующих звеньев между нонсенс-мутациями и компенсаторным повышением экспрессии родственных генов. Ранее уже было замечено, что при GCR в промоторных областях генов, экспрессия которых повышается в ответ на нонсенс-мутацию родственного гена, растет частота встречаемости эпигенетической метки, которая называется H3K4me3 (триметилирование лизина, занимающего четвертую позицию в гистоне Н3). Эти метки, собственно, и являются причиной усиленной экспрессии упомянутых генов. Новые эксперименты подтвердили эти факты. Кроме того, они показали, что для появления дополнительных меток H3K4me3 в промоторных областях «компенсирующих» генов (но не в других частях генома) необходима нормальная работа гена upf3a. Если этот ген отключить, то GCR не происходит, по-видимому, именно по той причине, что в промоторных областях «компенсирующих» генов не образуются метки H3K4me3.

За формирование меток H3K4me3 в промоторных областях генов отвечает белковый комплекс COMPASS. Дополнительные эксперименты показали, что белок Upf3a избирательно связывается с белком Wdr5, входящим в состав комплекса COMPASS, и что этот комплекс действительно прикрепляется к промоторным участкам «компенсирующих» генов при GCR. Кроме того, в нескольких экспериментах было показано, что без нормально работающего белка Wdr5 генетический компенсаторный ответ не происходит. Например, у мутантных эмбрионов capn3aΔ14/Δ14, у которых вдобавок был выведен из строя ген wdr5, печень вообще не сформировалась, а экспрессия capn8 и capn12 не повысилась.

Полученные результаты в целом согласуются со схемой, показанной на рисунке. Некоторые детали этой схемы уже можно считать доказанными, в то время как другие нуждаются в дополнительных подтверждениях. К числу надежно установленных фактов можно отнести участие в GCR нонсенс-опосредованного распада мРНК, белка Upf3a, белкового комплекса COMPASS и эпигенетических меток H3K4me3 в промоторных областях «компенсирующих» генов, а также взаимодействие Upf3a c COMPASS. Идея о том, что обрезки разрушенной мРНК прикрепляются к белку Upf3a и используются им для обнаружения генов с похожей последовательностью (подобно «гидовым» РНК в системе CRISPR) и для привлечения к этим генам комплекса COMPASS, на данный момент является красивой и правдоподобной, но не доказанной гипотезой.

Полученные результаты важны как в теоретическом, так и в практическом плане. С одной стороны, они показывают, насколько неполны до сих пор наши знания и о регуляции экспрессии генов, и о механизмах устойчивости к мутациям. Кроме того, они объясняют, почему разные способы отключения одних и тех же генов могут давать разные результаты на уровне фенотипа. Это важно учитывать при планировании молекулярно-генетических экспериментов. Например, если мы хотим нокаутировать ген, чтобы выяснить его функцию, то нужно позаботиться о том, чтобы не сработал нонсенс-опосредованный компенсаторный ответ. Ведь иначе можно принять важный ген за «функционально избыточный» только потому, что эволюция сумела создать компенсаторный механизм, позволяющий справляться с некоторыми (но не любыми) его поломками. Наконец, исследование заставляет по-новому взглянуть на эволюционную роль генных дупликаций, благодаря которым в геномах эукариот присутствует так много семейств родственных генов (паралогов). Даже если паралоги давно поделили между собой функции и в норме работают в разных тканях и на разных стадиях развития, они, как выясняется, при необходимости могут привлекаться для «затыкания дырок» в других молекулярных системах, поврежденных мутациями, тем самым повышая помехоустойчивость организма.

Источник: ЭЛЕМЕНТЫ БОЛЬШОЙ НАУКИ

Есть вопрос или комментарий?..


Ваше имя Электронная почта
Получать почтовые уведомления об ответах:

| Примечание. Сообщение появится на сайте после проверки модератором.


Вернуться в раздел НОВОСТИ

Регистрация ЛСCRO Биоконсалтинг предлагает любые виды услуг по юридическому оформлению лекарственных средств на территории РФ....
Открыть раздел Регистрация ЛС
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Подработка для студентов! Участие в медицинских-научных исследованиях. Исследования проводятся в течении 4-х дней (2+2 через 2 недели) (оплата от 3 000 рублей в день)....
Открыть раздел Вакансии
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Политика в области качестваОсновная цель деятельности Общество с ограниченной ответственностью «Биоконсалтинг» (далее ООО «Биоконсалтинг») – проведение токсикологических,...
Открыть раздел Политика в области качества
The LineAct Platform