НОВОСТИ

 
14 августа 2017 г.

Молекулярные биологи из Университета Калифорнии в Сан Диего (США) на основе технологии CRISPR/Cas9 разработали метод устранения транскрипов микросателлитной РНК. Накопление такой РНК связано с развитием множества тяжелых заболеваний, таких как боковой амиотрофический склероз, миотоническая дистрофия мышц, болезнь Хантигтона и т.д. Ученым удалось испытать новый метод пока только на отдельных клеточных линиях, однако результаты исследований выглядят достаточно перспективно с точки зрения терапии этих до сих пор неизлечимых заболеваний. Статья исследователей опубликована в журнале Cell.

Микросателлиты — это участки генома, представляющие собой множественные повторы коротких (менее 9 букв) нуклеотидных «фраз», вроде (CTG)n, (CCTG)n и т.д.. Они составляют значительную часть всего генома человека и часто рассматриваются в качестве так называемой мусорной, то есть не выполняющей никаких осмысленных функций ДНК. Подобные повторы встречаются как вне, так и внутри генов (прежде всего в некодирующих участках, интронах), они имеют тенденцию быстро изменяться (увеличиваться или уменьшаться) от поколения к поколению, что, например, используется в генетике для установления родства между близкими индивидами.

Экспансию таких последовательностей, если они находятся внутри генов, медики связывают с развитием нескольких тяжелых заболеваний. По-видимому, увеличение числа повторов в ДНК вредно не само по себе, а как причина неправильного созревания (сплайсинга) матричной РНК этих генов. Развитие заболевания обычно сопровождается накоплением в ядре точечных агрегатов РНК c этими «мусорными» последовательностями. Иногда такая РНК даже транслируется в белки, что приводит к накоплению нерастворимых белковых агрегатов и приводит к гибели клеток. На уровне организма это выглядит как необратимая дистрофия мышц, отмирание периферических нейронов и так далее.

Причинно-следственная связь между накоплением микросаттелитов в генах и развитием тех или иных симптомов болезни пока исследована слабо и находится для большинства обсуждаемых болезней на уровне доказанной корреляции. В случае одного из типов бокового амиотрофического склероза, миодистрофии и болезни Хантингтона. Тем не менее, есть основания полагать, что поскольку каждое из заболеваний сопровождается накоплением агрегатов РНК в ядрах, то и устранение этих агрегатов может привести к устранению симптомов заболевания. Именно этим руководствовались авторы новой статьи, разработавшие метод устранения агрегатов и «вылечившие» с его помощью несколько клеточных культур.

Теоретически, устранить причину обсуждаемых заболеваний можно было бы с помощью точечного вмешательства в геном: достаточно удалить повторы, привести нужные гены в «нормальное» состояние и причина болезни будет ликвидирована. Совершенствование технологии CRISPR/Cas9 сделало эту теоретическую возможность практической опцией терапии. В некоторых случаях такой подход уже даже вышел на стадию клинических исследований.

Проблема в том, что редактирование генома подразумевает разрезание ДНК, а это чревато резким увеличением числа мутаций в клетках. Кроме того, применение даже самых точных «геномых ножниц» неизбежно приводит к возникновению лишних, нецелевых (off-target) разрезов в других местах генома, что также опасно и может сопровождаться развитием злокачественных новообразований. Обсуждение масштаба таких нецелевых разрывов при генетической терапии сейчас находится в самом разгаре, и, возможно, в реальности опасность CRISPR/Cas9 сильно преувеличена. Как бы то ни было, переход от ДНК к РНК позволяет устранить эту проблему полностью: какие бы побочные разрывы не происходили в РНК, они не отразятся на стабильности генома. Далеко не для всех болезней такой переход возможен, однако именно поэтому авторы новой статьи обратили свое внимание на те заболевания, что связаны с накоплением микросаттелитной РНК.

Работает новый метод следующим образом. В клетки с помощью модифицированного аденовируса вносится генетический конструкт, который содержит направляющую РНК и специализированную версию нуклеазы Cas9. Последняя не способна разрезать ДНК, т.к. в ее активном центре искусственно удалены необходимые для этого аминокислоты. Тем не менее, инактивированная нуклеаза может связываться с молекулами РНК под руководством соответствующей направляющей РНК. К модифицированной Cas9, названной авторами RСas9, также присоединена короткая РНКаза, которая уничтожает те РНК, к которым присоединяется комплекс.

В ходе экспериментов на клеточных линиях, в т.ч. и выделенных у пациентах с миодистрофией, ученые показали, что RСas9 действительно способна устранять агрегаты специфической для заболевания микросаттелитной РНК. Кроме того, в клетках происходить нормализация измененного при дистрофии сплайсинга (на уровне всего генома, а не отдельного гена с микросателлитами) и резко падает концентрация количество пептидов, транслированных с микросаттелитных повторов. Что касается побочных эффектов, то авторы оценили воздействие системы на нецелевые РНК как незначительное: по данным транскриптомного анализа, менее 10 различных генов изменили свой уровень экспрессии в результате применения RСas9. Отдельная часть статьи посвящена экспериментам по уменьшению размера Cas9 таким образом, чтобы получившийся конструкт можно было поместить в очень ограниченный геном вируса-носителя.

Устранение агрегатов микросателлитных РНК из ядер: по горизонтали разные способы окрашивания клеток (на микросателлитную РНК, на белок-нуклеазу, на ДНК вообще и наложение всех трех), по вертикали различные эксперименты с добавлением отдельных компонентов (CTG-РНК микросаттелитов, sgRNA - направляющая РНК, dCas9-PIN-HA — белок-нуклеаза). Видно, что исчезновение РНК-агрегатов происходит только в том случае (+++), когда есть все компоненты системы (NT — неправильная, несоответсвующая микросателлитам направляющая РНК). Характерно, что это происходит только в тех клетках, где прошла трансфекция, т.е. система попала внутрь клетки. Они обозначены белыми стрелками. Красными отмечены клетки, куда генетический конструкт с нуклеазой не попал, они отличаются отсутствием зеленого сигнала.

Технология редактирования генома CRISPR/Cas9 в последнее время постепенно приходит в клиническую практику. Пока большинство ученых не рискует применять ее для внесения перманентных, наследуемых изменений в геном, хотя лабораторные эксперименты в этом направлении проводятся уже не только в Китае, но и в США. Большинство методов терапии сосредоточено на внесении ненаследуемых изменений в соматические клетки либо на еще более мягкой версии метода — действия на уровне РНК.

Источник: N+1

Есть вопрос или комментарий?..


Ваше имя Электронная почта
Получать почтовые уведомления об ответах:

| Примечание. Сообщение появится на сайте после проверки модератором.


Вернуться в раздел НОВОСТИ

Регистрация ЛСCRO Биоконсалтинг предлагает любые виды услуг по юридическому оформлению лекарственных средств на территории РФ....
Открыть раздел Регистрация ЛС
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Подработка для студентов! Участие в медицинских-научных исследованиях. Исследования проводятся в течении 4-х дней (2+2 через 2 недели) (оплата от 3 000 рублей в день)....
Открыть раздел Вакансии
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Политика в области качестваОсновная цель деятельности Общество с ограниченной ответственностью «Биоконсалтинг» (далее ООО «Биоконсалтинг») – проведение токсикологических,...
Открыть раздел Политика в области качества
The LineAct Platform