НОВОСТИ

 
03 мая 2017 г.

«Ученые вылечили рак», — будто нарочно сбежавшая из популярного мема фраза то и дело всплывает в средствах массовой информации. Восемь из десяти таких заметок в последние дни посвящены действительно очень мощному и интересному изобретению ученых — лимфоцитам с химерными рецепторами — chimeric antigen receptor T cells, или сокращенно CAR T-клеткам.

Примерно так работает превращение Т-клеток в CAR-T in vivo.

Что же такое CAR T-клетка? В Т-лимфоциты с помощью вирусного вектора или плазмидной ДНК путем электропорации доставляют генетическую конструкцию, заставляющую лимфоцит экспрессировать химерный рецептор. Внеклеточная часть такого рецептора представляет собой scFv-фрагмент антитела и способна распознавать конкретную заданную мишень, а внутриклеточная часть — кусок внутриклеточной части Т-клеточного рецептора, которая активирует лимфоцит. Устройство CAR T-клетки схематично показано на рисунке 1 на примере CAR-T, сконструированного против рецептора-мишени CD19. CD19 экспрессируется на поверхности всех В-клеток, в том числе и злокачественных клеток при В-клеточных лейкозах и лимфомах.

Рисунок 1. Устройство анти-CD19 CAR T-клеток, применяющихся для терапии В-клеточных онкогематологических заболеваний.

Традиционная схема получения CAR T-клеток — это схема ex vivo: Т-клетки извлекают из периферической крови самих пациентов (в этом случае говорят об аутологичных клетках) или других доноров (аллогенные клетки), модифицируют с помощью вектора, несущего конструкцию с химерным рецептором, очищают, тестируют и вводят в пациента (рис. 2). Цикл производства требует весьма больших материально-технических и человеческих ресурсов, контроля качества и безопасности на каждом этапе и разрешения регулирующих органов, что делает такую терапию «бутиковой».

Рисунок 2. Методы клеточной терапии ex vivo и in vivo.

Еще одна, вероятно, более важная проблема — сложность стандартизации терапии, которая не позволяет рассматривать CAR-T в качестве того агента, с которым можно производить полноценные мультицентровые исследования: разные центры могут использовать отличные друг от друга генетические конструкции химерных рецепторов, различные способы доставки этих генетических конструкций в ядро, руководствоваться разными дизайнами исследований. Получается, как в уравнении, в котором очень много переменных — даже, если терапия сработает шикарно, вы никогда не узнаете до конца почему.

Некоторые исследователи идут на хитрость — можно создать суперцентр, в котором централизовано делать CAR-T: вы присылаете им Т клетки пациентов, а они за две недели делают CAR-T, проверяют и отправляют вам обратно. Получите, распишитесь — стандартная доза, стандартные кондиционирование-лимфодеплеция перед введением, стандартные критерии оценки эффективности и осложнений. Разумеется, схема хороша в случае сильных межцентровых коммуникаций, отсутствии проблем с доставкой и технической оснащенностью центров; она вполне реализуема, например, в пределах США. Но все равно это не идеал. «Фармакологический» идеал можно несложно измерить, долго и просто хранить, транспортировать без лишней головной боли, проводить с ним привычные фармакокинетические испытания и теоретически распространить на центры, лишенные развитой лабораторно-технической базы. Было бы проще, если можно было наделать CAR-T, засушить, расфасовать и продавать в порошке — мол, просто добавь воды в такой-то пропорции. Фантазии все это, да не совсем.

Авторы недавней статьи в Nature Nanotechnology предложили альтернативу классической схеме получения CAR-T ex vivo — придумали наночастицы (рис. 3), которые способны производить CAR-T in vivo: при введении в кровоток эти наночастицы привлекают Т-клетки пациента и, заставляя экспрессировать химерный рецептор, превращают их в CAR-T. Для этого пришлось решить несколько очень интересных задач, с которыми исследователи блестяще справились.

Рисунок 3. Получение наночастицы, способной производить анти-CD19 CAR-T клетки in vivo. а — Схема наночастицы. На вставке — микрофотография наночастицы, полученная методом просвечивающей электронной микроскопии (шкала — 100 нм). Показаны схемы двух плазмид, инкапсулированных в наночастицы. Одна кодирует мышиный 194-1BBz CAR, другая — гиперактивную iPB7-транспозазу. б — Схема изготовления наночастиц. Чтобы увидеть рисунок в полном размере, нажмите на него.

Задача первая: наночастица должна найти T-клетку и проникнуть в нее путем эндоцитоза. Для этого наночастицу покрыли полиэтиленгликолем и функционализировали фрагментом анти-CD3 антитела. CD3 — это, как известно, маркер всех Т-клеток.

Задача вторая: генетическая конструкция, кодирующая химерный рецептор, из наночастицы должна попасть в ядро T-клетки. Для этого отрицательно заряженную плазмидную ДНК с генетической конструкцией мешали с положительно заряженным полимером PBAE 447, в который зашили пептиды, содержащие последовательность ассоциированного с микротрубочками белка (microtubule-associated sequences, MTAS) и сигнал ядерной локализации (nuclear localization signal, NLS), что обеспечивало быстрый транспорт генетического конструкта по «рельсам»-микротрубочкам к ядру и его беспрепятственное проникновение внутрь.

Задача третья: генетическая конструкция должна более-менее устойчиво экспрессироваться. Для этого ее нужно встроить в геном Т-клетки. Чтобы произошла интеграция, конструкцию фланкировали траспозонными последовательностями piggyBac и ввели в наночастицу дополнительную плазмиду, кодирующую гиперактивную траспозазу iPB7.

Наночастицы успешно протестировали на мышиной модели В-клеточного острого лимфобластного лейкоза и показали антилейкемическую активность и безопасность, не уступающую CAR-T, полученным традиционным способом — ex vivo.

Понятно, что представленная технология еще далека от клинического применения, но авторы выражают большую надежду на то, что она станет основой для сравнительно недорогого и широкодоступного применения CAR-T.

Источник: БИОМОЛЕКУЛА

Есть вопрос или комментарий?..


Ваше имя Электронная почта
Получать почтовые уведомления об ответах:

| Примечание. Сообщение появится на сайте после проверки модератором.


Вернуться в раздел НОВОСТИ

Регистрация ЛСCRO Биоконсалтинг предлагает любые виды услуг по юридическому оформлению лекарственных средств на территории РФ....
Открыть раздел Регистрация ЛС
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Подработка для студентов! Участие в медицинских-научных исследованиях. Исследования проводятся в течении 4-х дней (2+2 через 2 недели) (оплата от 3 000 рублей в день)....
Открыть раздел Вакансии
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Политика в области качестваОсновная цель деятельности Общество с ограниченной ответственностью «Биоконсалтинг» (далее ООО «Биоконсалтинг») – проведение токсикологических,...
Открыть раздел Политика в области качества
The LineAct Platform