НОВОСТИ

 
28 апреля 2016 г.

На генетическом уровне опухолевое перерождение сопровождается превращением протоонкогенов в активные онкогены. В исследовании, опубликованном в журнале Science, описан новый механизм активации протоонкогенов, индуцируемый небольшим нарушением организации хроматина. Открытие дополняет наши знания о процессах, ведущих к возникновению раковых клеток.

Новый механизм активации протоонкогенов: мутация в сайте связывания транскрипционного репрессора CTCF приводит к попаданию промотора протоонкогена под действие энхансера.

Геном человека содержит значительное количество потенциально опасных протоонкогенов, которые в результате небольших перестроек ДНК в соматических клетках могут превращаться в онкогены. Часто они кодируют белки, участвующие в регуляции клеточного деления. Что неудивительно, ведь раковые клетки отличаются от нормальных именно способностью к постоянному росту и делению. Это сближает их со стволовыми клетками, в том числе и с надеждой регенеративной медицины — индуцированными плюрипотентными стволовыми клетками (ИПСК): самым простым и действенным способом их получения является повышение экспрессии определенного набора генов, включающего протоонкогены c-Myc и Klf4. Для того чтобы безобидный и нужный организму протоонкоген превратился в зловредный онкоген, повышающий вероятность опухолевого перерождения, порой бывает достаточно всего одного события, называемого активацией протоонкогена. Чаще всего активация состоит в резком повышении уровня экспрессии гена. Достоверно установлены следующие механизмы активации протоонкогенов (рис. 1):

нуклеотидная замена в протоонкогене;

слияние протоонкогена с каким-то активно экспрессирующимся геном;

увеличение числа копий протоонкогена в ДНК;

захват энхансера — помещение участка ДНК, повышающего уровень транскрипции с определенных промоторов, в такую позицию, откуда он начинает контролировать промотор протоонкогена.

Рисунок 1. Известные механизмы активации протоонкогенов. Сверху вниз: нуклеотидная замена, слияние генов, захват энхансера, амплификация гена. Справа приведены примеры опухолей, в которых зарегистрирован тот или иной механизм активации протоонкогена.

Если с первыми тремя механизмами всё более-менее понятно, то в вопросе взаимодействия энхансеров с промоторами остается много неясного. Например, далеко не всегда очевидно, в какой такой специальной позиции должен оказаться энхансер, чтобы регулировать определенный промотор. Тем не менее известно, что существуют особые участки ДНК, называемые инсуляторами, которые препятствуют взаимодействию энхансеров с промоторами, если оказываются между ними.

Инсуляторные последовательности узнает специальный белок CTCF — важнейший фактор пространственной организации хроматина. Две молекулы CTCF способны связываться друг с другом, образуя таким образом петлю ДНК, ограниченную инсуляторами. Если энхансер и промотор располагаются в пределах одной такой петли, они взаимодействуют, если же они разделены сайтом связывания CTCF, энхансер теряет способность активировать данный промотор. Эти петли по-английски называются insulated neighborhoods («изолированные районы»), и в их состав суммарно может входить половина всей ДНК клетки (см. заглавный рисунок и рис. 2)! Получается, что именно от CTCF зависит, какие энхансеры с какими промоторами взаимодействуют. Роль CTCF в организации хроматина настолько важна, что инверсия (разворот на 180 градусов) участка ДНК, с которым он связывается, ведет к изменению топологии петель и нарушениям регуляции экспрессии генов.

Рисунок 2. Современные представления об уровнях организации хроматина. Хромосомы составлены из так называемых топологически ассоциированных доменов (клубков хроматина), в состав которых входят петли. Видно, что крупная петля (insulated neighborhood), образованная белками CTCF (показан фиолетовым) и когезином (голубое кольцо), включает в себя петлю, образованную только когезином.

Следует отметить, что insulated neighborhoods — далеко не единственный вид петель в хроматине. Существуют, например, петли между энхансерами и промоторами, которые необходимы для взаимодействия этих геномных элементов. В их образовании CTCF не принимает никакого участия. Единственное, что объединяет все виды петель — это белковый комплекс когезин. Когезин состоит из четырех белков, которые сближают удаленные участки хроматина, образуя вокруг них кольцо. Когезин также способствует гомологической рекомбинации и удерживает две хроматиды в составе одной хромосомы.

Молекулярные биологи из нескольких лабораторий США решили выяснить, могут ли мутации в сайтах связывания CTCF приводить к активации протоонкогенов. Для этого они проанализировали относительное расположение петель, образованных CTCF и когезином, и активированных онкогенов в хроматине клеток, происходящих из Т-клеточной лимфомы. Оказалось, что большинство изученных онкогенов (40 из 55) находились в пределах этих петель. 27 таких онкогенов активно экспрессировались, а из них 13 располагались в петлях, содержащих суперэнхансеры — группы близко расположенных друг к другу энхансеров. Сравнив геномы раковых и нормальных клеток, ученые выяснили, что в ряде случаев повышение экспрессии протоонкогена сопровождается делецией фрагмента ДНК, содержащего ближайший сайт связывания CTCF. Вероятно, в этих случаях граница петли перемещается, и в ее составе оказывается энхансер, что и приводит к активации протоонкогена.

Чтобы подтвердить свою гипотезу, исследователи решили не искать уже существующие делеции, а получить их самостоятельно в ДНК Т-лимфоцитов. Любой приличный молекулярный биолог, решивший в наши дни получить геномную делецию, первым делом подумает про систему CRISPR/CAS9. Авторы обсуждаемой статьи так и сделали: с помощью CRISPR/CAS9 они удаляли отдельные сайты связывания CTCF, раздвигая тем самым границы петель, и затем с удовольствием наблюдали за повышением уровня экспрессии протоонкогенов (рис. 3). Оказалось, что интенсивность контактов между участками ДНК, в норме находящимися в петле и за ее пределами, возросла. Эти данные свидетельствуют о том, что белок CTCF, изолируя протоонкогены от энхансеров, защищает их от активации.

Рисунок 3. Активация протоонкогена TAL1 в результате делеции сайта связывания CTCF. В результате делеции, внесенной в геном с помощью CRISPR/CAS9 (показана красным), экспрессия протоонкогена TAL1 усилилась более чем в два раза (уровень экспрессии показан на гистограмме слева).

Эти безусловно важные для фундаментальной науки результаты так и остались бы интересным фактом, если бы ученые не провели анализ широкого спектра линий раковых клеток человека на предмет мутаций в областях границ петель. Авторы использовали доступные онлайн гигантские массивы данных о мутациях в сайтах связывания CTCF. Оказалось, что в раковых клетках гораздо больше таких мутаций. Интересно, что сайт узнавания CTCF — это не всегда граница петли, и мутациями обогащены именно те сайты, которые отграничивают insulated neighborhoods. Это еще одно подтверждение модели, а главное — доказательство ее применимости к различным опухолям.

Таким образом, новые данные дополнили наши представления о механизмах активации протоонкогенов. Эта информация может пригодиться как ученым, работающим над вопросами структурно-функциональной организации хроматина, так и онкологам. Последним, в частности, может быть интересна подмеченная авторами статьи особенность: описанный ими механизм активации протоонкогенов особенно активно используют клетки карцином пищевода и печени.

В настоящее время ведутся дискуссии о возможностях терапии путем редактирования генома. «Пока что использовался только метод относительно безопасного модифицирования клеток крови, которые затем удалялись из организма. Вмешиваться в геном клеток, которые останутся в организме пациента, — гораздо более рискованная задача. Тем не менее уже не за горами то время, когда редактирование ДНК будет введено в медицинскую практику. Чем больше мы к тому моменту узнаем о том, что именно нужно редактировать (например, устранять повреждения сайтов связывания CTCF в некоторых случаях рака), тем лучше.

Источник: БИОМОЛЕКУЛА

Есть вопрос или комментарий?..


Ваше имя Электронная почта
Получать почтовые уведомления об ответах:

| Примечание. Сообщение появится на сайте после проверки модератором.


Вернуться в раздел НОВОСТИ

Регистрация ЛСCRO Биоконсалтинг предлагает любые виды услуг по юридическому оформлению лекарственных средств на территории РФ....
Открыть раздел Регистрация ЛС
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Подработка для студентов! Участие в медицинских-научных исследованиях. Исследования проводятся в течении 4-х дней (2+2 через 2 недели) (оплата от 3 000 рублей в день)....
Открыть раздел Вакансии
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Политика в области качестваОсновная цель деятельности Общество с ограниченной ответственностью «Биоконсалтинг» (далее ООО «Биоконсалтинг») – проведение токсикологических,...
Открыть раздел Политика в области качества
The LineAct Platform