Хромотрипсис — недавно открытый тип комплексных геномных изменений, для которого характерны множественные случайные перестройки в хромосомах; чаще всего он встречается в раковых клетках. Механизм хромотрипсиса неизвестен, но полагают, что катастрофические изменения могут происходить в особой клеточной структуре — микроядре. С помощью комбинации методов — визуализации живых клеток и секвенирования геномов отдельных клеток — ученые продемонстрировали, что формирование микроядра может генерировать перестройки в геноме, которые воспроизводят все известные черты хромотрипсиса.
Моделируя хромотрипсис, ученые полагают, что хромосома сначала разрывается на десятки и даже тысячи частей, а потом эти части соединяются в случайном порядке, что-то при этом утрачивается. Иногда в перестройке участвует несколько хромосом. В результате формируются мутантные зоны генома, провоцирующие развитие онкологических и врожденных заболеваний.
Геном раковых клеток отличается от нормального — он сильно изменен за счет появления точечных мутаций и хромосомных перестроек. Долгое время считали, что рак развивается из-за постепенного накопления ошибок в геноме. Однако последние исследования ставят под сомнение универсальность такой гипотезы. По крайней мере в 2–3% образцов различных злокачественных опухолей и почти в 25% случаев рака костей (остеосарком и хордом) найден хромотрипсис. Хромотрипсис (греч. thripsis — разрушение на мелкие части) — это радикальная перестройка хромосомы (рис. 1). В результате взамен старой образуется практически новая хромосома, причем всё происходит «одномоментно» в ходе одного клеточного цикла. Хромотрипсис был впервые обнаружен в клетках лимфоцитарного лейкоза: значительные перестройки нашли в хромосомах 1, 4, 12 и 15. Затем такие изменения обнаружили и в других раковых клетках: меланомы, саркомы, карциномы кишечника (чуть ли не в каждом исследованном случае выявили хромотрипсис разного масштаба) и т.д.
Принцип хромотрипсиса
Механизм хромотрипсиса неизвестен. Складывается впечатление, что хромосому разрывают на части, а затем объединяют ее фрагменты между собой в случайном порядке и ориентации. При этом некоторые участки хромосомы вообще теряются. Попытки моделирования хромотрипсиса указывают на то, что в его основе должно лежать единичное катастрофическое событие, а не последовательность хромосомных перестроек. Одной из особенностей хромотрипсиса является то, что он затрагивает только одну хромосому (редко — несколько). Поэтому такое изменение генетического материала происходит, скорее всего, во время митоза, когда хромосомы плотно упакованы и не пересекаются друг с другом в пространстве. В статье, опубликованной в журнале Nature, ученые из США показали, что хромотрипсис может происходить, когда в результате нарушенного клеточного деления формируются микроядра — структуры, содержащие одну изолированную хромосому.
Итак, ключ к пониманию механизмов хромотрипсиса, видимо, лежит в процессе митоза. Некоторые нарушения в клетке могут мешать хромосомам правильно закрепляться на веретене деления. Тогда они не расходятся к полюсам клетки, как это происходит в норме, а обособляются от других хромосом. Затем отделившиеся хромосомы-нарушители изолируются, образуя «собственное» ядро — микроядро (не путать с ядрышком — центром синтеза и сборки компонентов рибосом!).
Микроядро — опасное место для хромосомы. Его мембрана местами порвана и ненадежно защищает генетический материал (рис. 2). Также в микроядре недостаточно факторов, которые обеспечивают правильное удвоение ДНК перед делением клетки. О нормальных системах репарации дефектов тоже говорить не приходится. Поэтому хромосома в микроядре может претерпевать и закреплять многочисленные повреждения. Таким образом, микроядро — это подходящая среда для хромотрипсиса. Но прямых данных, подтверждающих это, до сих пор не было представлено.
Комбинированный анализ повреждений ДНК в микроядрах
Авторы статьи индуцировали появление микроядер с помощью нокодазола — химического реагента, который дестабилизирует веретено деления и учащает случаи неправильного сцепления с ним хромосом. Ученые наблюдали за делящимися клетками и идентифицировали те, в которых появлялось микроядро (рис. 2). Потомков таких клеток изолировали и по отдельности секвенировали их геномы — с целью проверить, вызвало ли временное присутствие микроядра хромотрипсис.
Характерно, что хромосома в микроядре не может нормально поделиться в S-фазе клеточного цикла. Поэтому те дочерние клетки, в которые она попадает впоследствии, получают аномальный хромосомный набор. То есть у «счастливых» обладателей генетического материала из микроядра будет хромосом больше или меньше, чем в норме. Эта особенность и помогла отличить их от нормальных клеток. Анализ последовательности нуклеотидов хромосом, побывавших в микроядре, показал, что у них имеются множественные перестройки. Мутационный процесс, в результате которого изменились хромосомы, в данном случае очень эффективен, практически стопроцентно. Это доказывает, что микроядра могут создавать подходящую среду для хромотрипсиса. Перестроенная хромосома может сохраниться в геноме, если возвратится в состав ядра. Там мутантную структуру стабилизируют системы репарации ДНК.
Хочется дополнить что микроядра представляют из себя не разошедшиеся при митозе ацентрические фрагменты хромосом, образованные в следствии двух цепочечных разрывов (малые микроядра), а также не разошедшиеся при митозе хромосомы из-за нарушения веретена деления (средние и крупные микроядра).
Источник: БИОМОЛЕКУЛА