У человека и животных известны кратковременная и долговременная память. Кратковременная память связана с фосфорилированием ряда белков в нейронах в ответ на их стимуляцию, что приводит к изменению «силы» синапсов. По мере того как модифицированные белки выводятся из оборота, событие забывается, если только не фиксируется в долговременной памяти. Очевидно, что механизм долговременной памяти принципиально отличен и должен базироваться на изменении, способном сохраняться очень долго. Но каком? Несколько лет назад было предположено, что таким изменением является переход в амилоидное состояние белка CPEB (Orb2 у мушки дрозофилы). И вот, наконец, эта гипотеза получила убедительное подтверждение. Американские биологи показали, что стимуляция нейронов у дрозофилы приводит к амилоидной олигомеризации белка Orb2, а мутации, нарушающие его олигомеризацию, также нарушают и долговременную память.
В этой работе соединились две большие области исследований: механизмы памяти и амилоиды. Предыстория открытия интересна и содержит немало важных деталей.
Амилоиды известны в первую очередь как патологические белковые структуры, вызывающие обширную группу амилоидных заболеваний, в частности болезни Альцгеймера и Паркинсона, а также прионные болезни. Они представляют собой фибриллярные полимеры некоторых в норме растворимых клеточных белков. Амилоиды катализируют структурную перестройку и присоединение к себе мономеров того же белка, и за счет этого растут. Они намного прочнее штатных клеточных полимеров, составляющих цитоскелет, поскольку фактически представляют собой единый мультимолекулярный бета-слой, в котором отдельные молекулы соединены множеством водородных связей. Поэтому амилоиды обладают высокой устойчивостью к протеазам и накапливаются, вызывая болезнь.
Амилоиды могут быть инфекционными, и тогда они называются прионами. У человека и животных прионы связаны лишь с одним белком, PrP, и вызывают коровье бешенство, скрейпи овец и болезнь Крейцфельдта–Якоба у людей. Инфекционность прионов связана с общим свойством амилоидов катализировать структурную перестройку. Различие же с прочими амилоидами по инфекционности определяется частными деталями: расположением прионного белка PrP на внешней клеточной мембране и, вероятно, какими-то механизмами, дробящими полимеры PrP на множество мелких, более подвижных частиц.
Явление, аналогичное прионам, было обнаружено у дрожжей Saccharomyces cerevisiae. У дрожжей, однако, прионы проявляются не как болезнь, а как фенотипы с нестандартным, неменделевским способом наследования. Прионы дрожжей возникают спонтанно, но достаточно редко. Затем они могут стабильно сохраняться в ряду поколений, а при скрещивании и мейотической сегрегации передаваться всем потомкам. Таким образом, прионогенный белок может стабильно находиться в двух состояниях: прионном (полимеризующемся) или нормальном. А значит, клетку с прионогенным белком можно представить, как однобитную ячейку памяти.
А теперь перейдем к устройству памяти. Большая доля знания о работе нейронов была получена при изучении нейронов моллюска Aplysia californica. Этот крупный моллюск имеет большие и удобные для изучения нейроны. Ключевым механизмом памяти считается способность нейронов изменять силу своих синапсов, или синаптическая пластичность. Существует два вида памяти — кратковременная и долговременная. Кратковременная память опосредуется фосфорилированием некоторых уже существующих белков и укреплением имеющихся синаптических связей. Долговременная требует синтеза новых мРНК и белков и часто сопровождается установлением новых синаптических связей. Поскольку синтез мРНК происходит в ядре и затрагивает весь нейрон, возник вопрос: происходит ли событие запоминания одновременно во всех синапсах нейрона или же оно специфично для каждого синапса? На модели изолированного нейрона было показано, что единичный импульс нейромедиатора серотонина вызывает кратковременное синапс-специфическое запоминание, а два и более — долговременное. При этом, если первый импульс прикладывали к одному синапсу, а второй — к другому, то долговременное запоминание происходило во втором синапсе и только в нём.
Это позволило предположить, что первый импульс активировал транскрипцию мРНК, необходимых для запоминания, которые отправлялись во все синапсы, но были неактивными, «спящими». Второй импульс активировал эти мРНК в отдельно взятом синапсе. В поиске такого активатора Нобелевский лауреат Эрик Кандель с сотрудниками обратили внимание на белок CPEB (cytoplasmic polyadenylation element binding protein; не путать с транскрипционным фактором CREB), который активирует спящие мРНК в разных типах клеток. Активация происходит вследствие удлинения полиаденинового хвоста, сигналом для чего служит связывание CPEB с последовательностью СРЕ в 3' нетранслируемой части мРНК.
И действительно, оказалось, что CPEB необходим для долговременной, но не кратковременной памяти, и его синтез намного увеличивается при стимуляции нейрона нейромедиатором серотонином. Далее обнаружилась удивительная вещь: по своей структуре CPEB оказался похож на дрожжевые прионные белки. Эти белки довольно несхожи между собой, но каждый из них имеет две части: функциональный домен и прионный домен, способный полимеризоваться. Функциональные домены совершенно различны, а прионные обладают общим свойством: они не структурированы и сильно обогащены аминокислотными остатками глутамином и аспарагином. Это свойство позволяет прионным доменам полимеризоваться в амилоидные фибриллы, и именно такой домен был обнаружен в белке CPEB. Свойства CPEB проверили в дрожжевой модели, и оказалось, что он ведет себя, как полноценный дрожжевой прион, то есть может переходить в стабильно наследуемое полимерное состояние. Правда, в отличие от дрожжевых белков, у которых прионное состояние функционально неактивно, у CPEB прионное состояние отличалось повышенной активностью. Всё это позволило предположить, что переход CPEB в полимерное состояние является ключевым событием в формировании долговременной памяти.
Однако доказательство этого тезиса оказалось нелегким, и, несмотря на интенсивные усилия, следующее продвижение в этой теме произошло лишь через семь лет. Видимо, это говорит о том, насколько сложнее манипулировать нервными клетками аплизии в сравнении с клетками дрожжей: трудно набрать достаточное количество клеток для биохимического анализа, сложнее манипуляции с генами. На этом этапе в тело нейрона аплизии инъецировали гены, кодирующие различные гибриды белка CPEB, сшитые с зеленым флуоресцентным белком. Такие гибриды — классический инструмент в изучении прионов: если белок растворим, клетка светится равномерно, а если он перешел в амилоидное состояние — свечение концентрируется в яркие точки. Гибридные белки, синтезированные нейроном, образовали характерные зеленые точки, а контрольный белок без глутамин-богатого домена давал диффузное свечение (рисунок сверху в заглавии статьи). Амилоидное состояние СРЕВ-GFP в точках было подтверждено окрашиванием амилоид-специфичным флуоресцентным красителем тиофлавином S. Также было показано, что переход СРЕВ-GFP в амилоидное состояние усиливался при стимуляции нервных клеток нейромедиатором серотонином. Прогресс небольшой, да и получен он был при искусственно завышенном уровне синтеза СРЕВ.
Но недавняя работа, сделанная уже на дрозофиле, расставила все точки над i. В отличие от аплизии, у дрозофилы есть два варианта белка СРЕВ: Orb2A и Orb2B, которые получаются из одной мРНК в результате альтернативного сплайсинга. Orb2B синтезируется постоянно (конститутивно), а Orb2A — лишь в ответ на стимуляцию нейрона. Они одинаковы в карбокси-концевой части, содержащей глутамин-богатый прионо-подобный домен и РНК-связывающий домен, но отличаются в амино-концевой части, имеющей 8 аминокислот в Orb2A и 162 аминокислоты в Orb2B. Было показано, что оба белка способны полимеризоваться, однако Orb2B может стабильно пребывать в растворимом состоянии, а Orb2A, напротив, с высокой вероятностью начинает полимеризацию. В частности, это наблюдали при флуоресцентной микроскопии гибридных белков Orb2-GFP. Оказалось, что способность Orb2A начинать полимеризацию связана с его уникальным N‑концевым фрагментом из 8 аминокислот.
Эти наблюдения позволили предложить простую схему: при стимуляции синапса синтезируется Orb2A, он переходит в полимерное состояние и увлекает за собой Orb2B. Далее процесс полимеризации поддерживается молекулами Orb2B и может продолжаться сколь угодно долго, что соответствует фиксации события в долговременной памяти.
Для подтверждения этой модели провели мутагенез Orb2A и получили мутации, нарушающие его способность инициировать полимеризацию. Половина мутаций попала в уникальный N‑концевой фрагмент Orb2A, содержащий лишь 8 аминокислот. Наиболее эффективная из этих мутаций была изучена подробнее. Это оказалась замена в пятой позиции фенилаланина на тирозин.
У мушек с этой мутацией нормально работала кратковременная память, а вот долговременная была нарушена. Это выяснили в следующих тестах. Мушкам давали попробовать капельки воды, простой или с сахаром, помеченные разными запахами. Затем проверяли, в течение какого времени мушки смогут выбирать правильную каплю по запаху. У мутантов ассоциация сохранялась лишь в течение двух суток. В другом тесте самцу предъявляли несколько раз подряд «неотзывчивую» самку, уже прошедшую спаривание. Наученный таким горьким опытом, обычный самец навсегда разуверивался в женском поле и не начинал ухаживаний, встречая очередную самку. А мутантный самец забывал о своих романтических неудачах примерно через двое суток. Эти тесты показывают, что мутация, нарушающая полимеризацию Orb2, нарушает и долговременную память.
Источник: ЭЛЕМЕНТЫ